top of page
Âncora 1
Research Interests

 

Our research interest is the utilization of the unique properties of metal nanoparticles for the design of heterogeneous catalysts with high control of composition, size, morphology, and surface and chemical properties. We have focused on the study of hydrogenation and oxidation reactions, with an emphasis on the conversion of carbon dioxide and biomass derivatives. Catalysis and catalyst design are very attractive research areas, which include both fundamental and applied studies. 

Research Projects

 

The research project Development of catalytic pathways to transform CO2 into chemicals and materials is under development at the Research Centre for Greenhouse Gas Innovation (FAPESP/SHELL)

Selected publications

 

Galhardo, Thalita S.; BRAGA, Adriano H.; Arpini, Bruno H.; Szanyi, János; Gonçalves, Renato V.; Zornio, Bruno F.; Miranda, Caetano R.; Rossi, Liane M. Optimizing Active Sites for High CO Selectivity during CO2 Hydrogenation over Supported Nickel Catalysts. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v. 143, p. 4268-4280, 2021.

Braga, Adriano H.; Costa, Natália J S; Philippot, Karine; Gonçalves, Renato; Szanyi, János; Rossi, Liane M. Structure and activity of supported bimetallic NiPd nanoparticles: influence of preparation method on CO2 reduction. ChemCatChem, v. 12, p. 2967-2976, 2020.

Gothe, Maitê L.; Pérez-Sanz, Fernando J.; Braga, Adriano H.; Borges, Laís R.; Abreu, Thiago F.; Bazito, Reinaldo C.; Gonçalves, Renato V.; Rossi, Liane M.; Vidinha, Pedro. Selective CO2 hydrogenation into methanol in a supercritical flow process. Journal of CO2 Utilization, v. 40, p. 101195, 2020.

 

Fiorio, J. L.; Gonçalves, R. V.; Teixeira-Neto, E.; Ortuño, M. A.; Lopez, N.; Rossi, L. M. Accessing frustrated Lewis pair chemistry through robust Gold@N-doped carbon for selective hydrogenation of alkynes. ACS Catalysis, v. 8, p. 3516-3524, 2018.

 

Fiorio, J. L.; Lopez, N.; Rossi, L. M. Gold-ligand catalyzed selective hydrogenation of alkynes into cis-alkenes via H2 heterolytic activation by frustrated Lewis pairs. ACS Catalysis, v. 7, p. 2973–2980, 2017.

 

Review articles
Graphical abstract.jpg

Review article Hydrogenation of carbon dioxide: from waste to value. In this minireview we discuss specific reaction pathways, mainly via catalytic hydrogenation and tandem processes for CO2 conversion in hydrocarbons, olefins, aromatics and alcohols. The majority of the steps have been studied extensively, but there are still significant challenges in developing active, selective, and stable catalysts for CO2 conversion and upgrade into molecules containing two or more carbons (C2+) suitable for large-scale CO2 valorization processes.

TOC 1 - v2.png

Review article The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts published in Dalton Transactions. In this Perspective review, we focus on the choice of capping ligands (or stabilizing agents), and their role and fate in different steps from preparation to catalysis. Evaluating the influence of the ligands on the catalytic response is not trivial, but the literature provides examples where the ligands adsorbed on the nanoparticle surface dramatically change the activity and selectivity for a particular reaction, while acting either as a dynamic shell or a passivation coating.

Review of Magnetic Nanomaterials in Catalysis: Advanced Catalysts for Magnetic Separation and Beyond published in Green Chemistry.  This Review gives an overview of the use of magnetic nanomaterials as catalyst supports for magnetic separation and for other magnetic field-driven technologies. Recent scientific progress on the preparation of surface-modified magnetic nanomaterials and the most common synthetic approaches to attach or immobilize non-magnetic catalytic active phases onto magnetic nanomaterials were discussed. The review paper has featured on the Front Cover of Green Chemistry.

An Account Paper of Recent advances in the development of magnetically recoverable metal nanoparticle catalysts published in Journal of the Brazilian Chemical Society. This Account provides an overview of our current research activities on the design and modification of superparamagnetic nanomaterials for application in the field of magnetic separation and catalysis.

Instituto de Química
UNIVERSIDADE DE SÃO PAULO

 

Prof. Liane M. Rossi

Av. Prof. Lineu Prestes, 748
Build 12, room 1265 (lab) and 863 (office)

São Paulo, SP 05508-000, Brasil
 

​​

EMAIL

lrossi@iq.usp.br

 

PHONE

+55 11 30912181 (Lab)

+55 11 30919143 (Office)

  • Instagram
  • Twitter
bottom of page